Functional relationships of FANCC to homologous recombination, translesion synthesis, and BLM.
نویسندگان
چکیده
Some of the restarting events of stalled replication forks lead to sister chromatid exchange (SCE) as a result of homologous recombination (HR) repair with crossing over. The rate of SCE is elevated by the loss of BLM helicase or by a defect in translesion synthesis (TLS). We found that spontaneous SCE levels were elevated approximately 2-fold in chicken DT40 cells deficient in Fanconi anemia (FA) gene FANCC. To investigate the mechanism of the elevated SCE, we deleted FANCC in cells lacking Rad51 paralog XRCC3, TLS factor RAD18, or BLM. The increased SCE in fancc cells required Xrcc3, whereas the fancc/rad18 double mutant exhibited higher SCE than either single mutant. Unexpectedly, SCE in the fancc/blm mutant was similar to that in blm cells, indicating functional linkage between FANCC and BLM. Furthermore, MMC-induced formation of GFP-BLM nuclear foci was severely compromised in both human and chicken fancc or fancd2 cells. Our cell survival data suggest that the FA proteins serve to facilitate HR, but not global TLS, during crosslink repair.
منابع مشابه
Mitochondrial DNA repair and damage tolerance.
The accurate maintenance of mitochondrial DNA (mtDNA) is required in order for eukaryotic cells to assemble a functional electron transport chain. This independently-maintained genome relies on nuclear-encoded proteins that are imported into the mitochondria to carry out replication and repair processes. Decades of research has made clear that mitochondria employ robust and varied mtDNA repair ...
متن کاملThe Bloom syndrome helicase BLM interacts with TRF2 in ALT cells and promotes telomeric DNA synthesis.
Telomerase-negative immortalized human cells maintain telomeres by alternative lengthening of telomeres (ALT) pathway(s), which may involve homologous recombination. We find that endogenous BLM protein co-localizes with telomeric foci in ALT human cells but not telomerase positive immortal cell lines or primary cells. BLM interacts in vivo with the telomeric protein TRF2 in ALT cells, as detect...
متن کاملCompetition between Replicative and Translesion Polymerases during Homologous Recombination Repair in Drosophila
In metazoans, the mechanism by which DNA is synthesized during homologous recombination repair of double-strand breaks is poorly understood. Specifically, the identities of the polymerase(s) that carry out repair synthesis and how they are recruited to repair sites are unclear. Here, we have investigated the roles of several different polymerases during homologous recombination repair in Drosop...
متن کاملNovel pro- and anti-recombination activities of the Bloom's syndrome helicase.
Bloom's syndrome (BS) is an autosomal recessive disorder characterized by a strong cancer predisposition. The defining feature of BS is extreme genome instability. The gene mutated in Bloom's syndrome, BLM, encodes a DNA helicase (BLM) of the RecQ family. BLM plays a role in homologous recombination; however, its exact function remains controversial. Mutations in the BLM cause hyperrecombinatio...
متن کاملRecFOR proteins are essential for Pol V-mediated translesion synthesis and mutagenesis.
When the replication fork moves through the template DNA containing lesions, daughter-strand gaps are formed opposite lesion sites. These gaps are subsequently filled-in either by translesion synthesis (TLS) or by homologous recombination. RecA filaments formed within these gaps are key intermediates for both of the gap-filling pathways. For instance, Pol V, the major lesion bypass polymerase i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The EMBO journal
دوره 24 2 شماره
صفحات -
تاریخ انتشار 2005